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Abstract.  This paper presents the integration of Inertia Navigation System and Global Position System (GPS) using 

Unscented Kalman Filter (UKF). The nonlinear system model is used because linearized system models introduce errors 

in high dynamic environments. The navigation performance and robustness of the proposed algorithm are also compared 

with that of the extended Kalman filter (EKF). To enhance the navigation performance, the non-holonomic constraint is 

applied to the UKF and it is found that the robustness of system is better than before when the GPS signal outages. 
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INTRODUCTION 

It is difficult to develop an accurate vehicle 

navigation using GPS as satellite signals cannot be 

guaranteed at all times. So, augmentation of GPS with 

INS requires to improve navigation accuracies. The 

main drawback of an INS is the degradation of its 

performance with time. In order to limit the errors to 

an acceptable level, regular updates are necessary and 

GPS measurements can be used to this purpose. The 

most commonly used integration schemes in literatures 

are loosely and tightly coupled integration strategy. 

The tightly coupling has better performance in urban 

or natural canyons because it can provide an integrated 

navigation solution also with less than four satellites 

[1],[2].  

In a tightly coupled GPS/INS system, the system 

dynamic models as well as the measurement models 

are nonlinear. Therefore, the nonlinear system and the 

measurement models are simply linearized around the 

current state estimate to apply the usual EKF. EKF 

techniques suffer from divergence during GPS outages 

when using low-cost IMUs due to approximations 

during linearization process and suboptimal modeling. 

The main reason is that the low-cost sensors have 

complex error characteristics which are stochastic in 

nature and difficult to model. There are two main 

types of model for INS: error state space model and 

total state space model [1]. The error state space model 

is special cases of total state space model and can be 

obtained using linearization techniques. Although 

these error models save computing time, the 

performance and robustness decreases because of error 

introduced by linearization. To overcome these 

drawbacks and to enhance the performance and 

robustness of the tightly coupled integration, instead of 

an EKF, the UKF is applied on nonlinear total state 

model in this work.  

While the EKF approximates the propagation of 

mean and covariance of stochastic variables through 

nonlinear system dynamic and measurement models 

by linear transformations, which is accurate to first 

order only, in UKF a set of specifically selected 

sigma-points is propagated through the nonlinear 

models. Mean and covariance are then calculated from 

the set of transformed sigma-points, which is accurate 

to second order [3]. The navigation accuracy of INS is 

also improved by applying the non-holonomic 

constraint (NHC) to the GPS/INS integration and it 

provides the continuous navigation solution even 

during GPS signal outages [4]. 

The total state non-linear model and error state 

perturbation model of INS, and measurement models 

for pseudorange and pseudorange rate observations are 

described in section 2, and the computing steps of 

UKF are briefly explained in section 3. In section 4, 

the NHC and how to use it in UKF are discussed. 

Simulation results are presented in section 5 and 

conclusions are reported in the last section. 

TIGHT INTEGRATION OF GPS/INS 

In the tightly coupled integration scheme, INS data 

and GPS raw measurements (pseudorange and 

pseudorange rate) are processed in the data fusion 

algorithm, and the estimated errors are feedback to the 

INS to prevent the growth of navigation errors with 

time exhibited by an unaided INS [5]. The system 

dynamic models and the pseudorange and pseudorange 
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rate measurement models are the key to the 

development of GPS/INS data fusion algorithms. 

System Models  

The total state INS mechanization model is given 

by the following differential equations [1],[2]. In this 

work, navigation frame mechanization was chosen. 
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and    
 is angular rate of a body frame relative to 

navigation frame. 

Since the above nonlinear equations cannot be 

applied to EKF, they are linearized by perturbation and 

the linearized error state model is given by 
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 are biases in accelerometer and gyro 

outputs, and    and     are white Gaussian noise 

corrupting the measurements[6]. For UKF 

implementation, the total state model (equation (1), (2) 

and (3)) is used and the state vector is defined as  
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where [q0 q1 q2 q3 ] is the attitude quaternion vector. 

Equation (4), (5) and (6) are only used in EKF [7] and 

its state vectors is 

  [                                        
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Latitude, longitude and height above the ellipsoid 

are denoted as            and               are 

velocities components in navigation frame 

respectively. The accelerometer bias and gyro bias are 

modeled as random constants and the clock bias cb in 

meter and clock drift d in meter per seconds of GPS 

receiver are calculated using random walk model [4].   

The Observation Models 

The observables in our integration are pseudorange 

and pseudo-range rate of a GPS receiver. The 

pseudorange measurement    to the i
th

 satellite can be 

modeled as follows: 
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The satellite position in n-frame coordinates is denoted 

with   
  while the position of the GPS antenna is    

    

.     is the lever arm vector pointing from the origin of 

the body frame defined by the IMU to the GPS 

antenna. Additionally, the receiver clock bias    and 

the measurement noise      are included. The 

pseudorange rate can be described by 
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  is the unit vector pointing from the GPS antenna to 

the i
th

 satellite and    
 the rate of body frame relative 

to the earth frame. Additionally, measurement noise 

     and the clock error drift d enter this observation 

model. Although the equation (7) and (8) can be used 

directly for UKF, the linearized model given in [2] 

must be used for EKF implementation. 

UNSCENTED KALMAN FILTER 

UKF does not require to approximate nonlinear system 

dynamic and measurement models using the Jacobian 

in order to calculate the covariance of a random vector 

propagated through the nonlinear models. But a set of 

deterministically selected sigma-points which have the 

same mean and covariance as the original random 

vector is chosen. Then, these sigma-points are 

propagated through the nonlinear models, and the 

mean and the covariance of the transformed random 

vector is calculated from the propagated sigma-points 

[3]. Then, given an covariance matrix   , the set of   

(2n+1) sigma points      
      is computed as 

follows: 

  
   ̂  

  
   ̂   √        for i= 1 . . . n           

  
   ̂   √         for i= n+1 …2 n 

where    √    , and      (   )     and it is 

a composite scaling parameter. The constant   

determines the spread of the sigma points around   ̂   

and is usually set to a small positive value(    
 ). The constant   is a secondary scaling parameter 

which is usually set to 0 to 3 – n and provides an extra 

degree of freedom for fine tuning of the higher order 

moments [3]. The calculation steps for UKF are as 

follows: 

1. Assign the sigma points  
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where √   is the Cholesky factorization of 

covariance matrix. 
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2. Propagate the sigma point using non-linear 

state equation. 

    
   ( ̂    )    

3. Calculate the propagated mean and 

covariance of the state vector. 
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4. Calculate a set of predicted measurements 

by propagating sigma points through the  

nonlinear measurement model. 
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The mean and covariance are   
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5. Finally the estimated state is obtained by 
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The covariance is updated as  

         
            

  
    
  

The UKF is an efficient derivative free filtering 

algorithm for computing approximate solutions to 

discrete-time non-linear optimal filtering problems. 

Since, in its original form, the UKF is a discrete-time 

algorithm and it cannot be directly applied to 

continuous-time problems, where the state dynamics 

and measurement processes are modeled as 

continuous-time stochastic processes. In this work, 

although the system model is non-linear and 

continuous-time process, we consider the system as a 

discrete–time system in order to reduce the amount of 

computation because there is no significant difference 

between the continuous-time UKF and discrete–time 

UKF for the short time step [8]. In our calculation, 

each of the sigma point are integrated through the 

noise free dynamic model  using 10 steps of the 4th 

ordered Runge- Kutta integration and then the mean 

and covariance are calculated. After that the 

measurement update is performed. 

NON-HOLONOMIC CONSTRAINT 

NHC refers to the fact that unless the vehicle jumps 

off the ground (along z-axis) or slides on the ground 

(along y-axis), the velocity of the vehicle in the plane 

perpendicular to the forward direction (along x-axis) is 

almost zero [4]. Therefore, two NHCs can be 

considered as additional measurement updates in 

addition to the GPS pseudorange and pseudorange rate 

measurements to the UKF. According to this 

assumption   

  
                           

        , 

where     and     are  the measurement noise value 

denoting any possible discrepancies in the above stated 

assumptions for a particular direction (x or z). The 

magnitude of the noise is chosen to reflect the extent 

of the expected constraint violations. 

The NHC in body frame (   
  and   

  ) can be 

converted to navigation frame as  

  ̂   ̂ 
    ̂   

For the UKF, the sigma points of velocity in 

navigation frame obtained from time update is 

pre-multiplied by  ̂ 
  computed from quaternion 

sigma points to yield the body frame velocity. 
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where     
    

 is the sigma points represented by 

velocity in n-frame. Then the measurement 

update can be obtained by 
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components of   ̂   
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    is measurement noise covariance matrix and it 

depends on the noise of forward velocity    ̂   
  and 

misalignment angle.  
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The estimated output is  
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If both NHC and GPS observables are used at the 

same time, the equation (9) becomes 
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where     
   (    

 )  and   (  ) represents the 

pseudorange and pseudorange rate measurement 

models. 

RESULTS AND DISCUSSION 

The trajectory data is collected around Seoul 

National University campus, Seoul, Korea using a low 

grade IMU and a GPS.  The sampling rates are 100 Hz 

for IMU and 1Hz for GPS respectively. The 

differential GPS data is used as a reference data in our 

calculation.  The numerical simulations are done in 

MATLAB using these data for the UKF and the EKF, 

and the navigation results obtained from UKF is 

compared with EKF results. Figure 1 shows the 

difference between position errors in ECEF coordinate 

for UKF and EKF, and the performance of UKF is 

slightly better than that of EKF. The small difference 

is due to the less non-linearity in land navigations. So, 

to make the test for robustness, large initial position 

errors (100m in each X,Y and Z directions) are given 

to both filters. The responses of the filters are given in 

Figure 2. In this case UKF has superior performance 

than EKF. 

To test the ability of the UKF algorithm on the 

GPS outages the satellite’s data are rejected in 

data processing. The results under complete 

GPS outages are firstly analyzed and then 

followed by the results under partial GPS 

outages.  

Figure 3 shows the trajectories obtained from 

different algorithms. The trajectory of the UKF 

without NHC diverges quickly when the GPS signals 

are completely blockage while GPS aided trajectory 

shows good performance. Although the track of UKF 

with NHC differs from reference trajectory, it keeps its 

path as possible in clockwise and counter clockwise 

loops.  

Figure 4 illustrates the 3D position errors during 

the complete GPS outages and each outage is 60 

seconds long. The accumulated INS error primarily 

depends on the grade of IMU used and the time span 

of the GPS outages. It was found that UKF with NHC 

has better performance than that without NHC. 

The performance of developed UKF with NHC 

algorithm for partial GPS outage is given in Figure 5. 

The results clearly show that the NHC significantly 

improves the navigation performance for periods of 

signal outage. 

 

 

x-component position errors of EKF and UKF 

y-component position errors of EKF and UKF 
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FIGURE 1. Comparison of EKF and UKF in position errors 

 

 
FIGURE 2. Performance of EKF and UKF for large initial position errors 

 

FIGURE 3. Comparison of trajectories 

z-component position errors of EKF and UKF 
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FIGURE 4. 3D position errors under complete GPS outages 
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FIGURE 5. 3D position errors under partial GPS outages 

CONCLUSION 

In this paper, the UKF is applied to the tightly 

coupled INS/GPS integration system. To avoid the 

linearization error, total state model of INS is used 

instead of error state model. The EKF based INS/GPS 

integration algorithm is also developed to compare the 

navigation performance with proposed algorithm. It 

was found that there is a small difference between 

EKF and UKF in position solution for land navigation. 

The significant advantage of our UKF based algorithm 

was found for extremely large initial position errors.  

In most of the literatures, the NHCs are used only 

when the GPS signals are not available. In this work, 

both NHC and GPS observables are applied 

simultaneously to the measurement update. The results 

show that the performance is improved in both 

completely outage and partial outage conditions of 

GPS and the average percentage errors are 

summarized in Table 1. We can conclude that applying 

UKF on a nonlinear total state model and using NHC 

with GPS observables do not degrade the performance 

of the navigation system significantly under the 

environment with fewer than four satellites and the 

robustness of the system is improved. 

 
TABLE 1. Average reduction errors 

GPS outages Average reduction error % 

No satellite is available 54.4  

1 satellite is available 53.2 

2 satellites are available 52.6 

3 satellites are available 52.4 

4 satellites are available 22.6 
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